Model-driven discovery of long-chain fatty acid metabolic reprogramming in heterogeneous prostate cancer cells

نویسندگان

  • Igor Marín de Mas
  • Esther Aguilar
  • Erika Zodda
  • Cristina Balcells
  • Silvia Marin
  • Guido Dallmann
  • Timothy M. Thomson
  • Balázs Papp
  • Marta Cascante
چکیده

Epithelial-mesenchymal-transition promotes intra-tumoral heterogeneity, by enhancing tumor cell invasiveness and promoting drug resistance. We integrated transcriptomic data for two clonal subpopulations from a prostate cancer cell line (PC-3) into a genome-scale metabolic network model to explore their metabolic differences and potential vulnerabilities. In this dual cell model, PC-3/S cells express Epithelial-mesenchymal-transition markers and display high invasiveness and low metastatic potential, while PC-3/M cells present the opposite phenotype and higher proliferative rate. Model-driven analysis and experimental validations unveiled a marked metabolic reprogramming in long-chain fatty acids metabolism. While PC-3/M cells showed an enhanced entry of long-chain fatty acids into the mitochondria, PC-3/S cells used long-chain fatty acids as precursors of eicosanoid metabolism. We suggest that this metabolic reprogramming endows PC-3/M cells with augmented energy metabolism for fast proliferation and PC-3/S cells with increased eicosanoid production impacting angiogenesis, cell adhesion and invasion. PC-3/S metabolism also promotes the accumulation of docosahexaenoic acid, a long-chain fatty acid with antiproliferative effects. The potential therapeutic significance of our model was supported by a differential sensitivity of PC-3/M cells to etomoxir, an inhibitor of long-chain fatty acid transport to the mitochondria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Utilization of Dietary Fatty Acids in Benign and Malignant Cells of the Prostate

Tumor cells adapt via metabolic reprogramming to meet elevated energy demands due to continuous proliferation, for example by switching to alternative energy sources. Nutrients such as glucose, fatty acids, ketone bodies and amino acids may be utilized as preferred substrates to fulfill increased energy requirements. In this study we investigated the metabolic characteristics of benign and canc...

متن کامل

Novel lipogenic enzyme ELOVL7 is involved in prostate cancer growth through saturated long-chain fatty acid metabolism.

A number of epidemiologic studies have indicated a strong association between dietary fat intake and prostate cancer development, suggesting that lipid metabolism plays some important roles in prostate carcinogenesis and its progression. In this study, through our genome-wide gene expression analysis of clinical prostate cancer cells, we identified a novel lipogenic gene, ELOVL7, coding a possi...

متن کامل

ATP citrate lyase inhibitors as novel cancer therapeutic agents.

ATP citrate lyase (ACL or ACLY) is an extra-mitochondrial enzyme widely distributed in various human and animal tissues. ACL links glucose and lipid metabolism by catalyzing the formation of acetyl-CoA and oxaloacetate from citrate produced by glycolysis in the presence of ATP and CoA. ACL is aberrantly expressed in many immortalized cells and tumors, such as breast, liver, colon, lung and pros...

متن کامل

Untargeted metabolomics reveals distinct metabolic reprogramming in endothelial cells co-cultured with CSC and non-CSC prostate cancer cell subpopulations

Tumour angiogenesis is an important hallmark of cancer and the study of its metabolic adaptations, downstream to any cellular change, can reveal attractive targets for inhibiting cancer growth. In the tumour microenvironment, endothelial cells (ECs) interact with heterogeneous tumour cell types that drive angiogenesis and metastasis. In this study we aim to characterize the metabolic alteration...

متن کامل

Multiplatform plasma metabolic and lipid fingerprinting of breast cancer: A pilot control-case study in Colombian Hispanic women

Breast cancer (BC) is a highly heterogeneous disease associated with metabolic reprogramming. The shifts in the metabolome caused by BC still lack data from Latin populations of Hispanic origin. In this pilot study, metabolomic and lipidomic approaches were performed to establish a plasma metabolic fingerprint of Colombian Hispanic women with BC. Data from 1H-NMR, GC-MS and LC-MS were combined ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2018